DS325 Applied Data Science Exam 2
Spring 2025, Professor Roth

name:	 	 	
		sec:	

I - Multiple Choice (30 pts)

- 1. In performing a logistic regression, you notice you have many highly correlated features. Which of the following could resolve the issue?
 - a. use lasso regression
 - b. apply PCA to your features
 - c. scale and encode your features
 - d. a and b
 - e. all of the above
- 2. Which of the following are differences between Random Forests and Gradient Boosted Trees?
 - a. The trees in a random forest are trained in parallel; the trees in a gradient boosted tree are trained sequentially.
 - b. Random forests have low variance; gradient boosted trees have high variance.
 - c. Random forests use bagging; gradient boosted trees focus on previously misclassified samples
 - d. b and c
 - e. all of the above
- 3. In the context of a decision tree, the homogeneity of the samples at a given node is described by:
 - a. R²
 - b. leaf variance
 - c. gini impurity
 - d. class
 - e. none of the above
- 4. Which of the following is **not** a classification problem?
 - a. predicting whether a Spotify customer will like or dislike a particular song based on other songs saved to their playlists
 - b. estimating the likelihood of rain (as a percentage) based on humidity and temperature
 - c. predicting which of streaming service's customers are likely to cancel their subscription in the coming month
 - d. using factors like income and past credit history to calculate whether a loan will default
 - e. more than one of the above
- 5. Which of the following is an example of an *unsupervised* learning algorithm?
 - a. PCA
 - b. K-Nearest Neighbors
 - c. K-Means
 - d. Random Forest
 - e. more than one of the above
- 6. In K-Nearest Neighbors, what does K refer to?
 - a. the number of nearby data points to poll in voting.
 - b. the radius around the unlabeled point that defines the neighborhood.
 - c. the number of votes a given category has to receive to win.
 - d. the number of different candidate categories a point can be assigned to.
 - e. none of the above

DS325 Applied Data Science Exam 1 Spring 2025, Professor Roth

- 7. In K-Means, what does K refer to?
 - a. the number of nearby data points to poll in voting.
 - b. the radius around the unlabeled point that defines the neighborhood.
 - c. the number of votes a given category has to receive to win.
 - d. the number of different candidate categories a point can be assigned to.
 - e. none of the above
- 8. In K-fold Cross Validation, what does K refer to?
 - a. the number of samples in the validation set.
 - b. the number of times a candidate model is fit and validated.
 - c. the number of partitions the training set is divided into.
 - d. a and b
 - e. b and c
- 9. Which of the following methods require numerical data to be scaled:
 - a. random forests
 - b. gradient boosted trees
 - c. decision trees
 - d. all of the above
 - e. none of the above
- 10. Which of the following require categorical data to be encoded:
 - a. random forest
 - b. logistic regression
 - c. K-nearest neighbors
 - d. all of the above
 - e. none of the above
- 11. Which of the following are examples of ordinal data?
 - a. 'morning', 'afternoon', 'evening', 'night'
 - b. 'rarely', 'sometimes', 'often', 'always'
 - c. 'socks', 'pants', 'shirt', 'hat'
 - d. two of the above
 - e. all of the above
- 12. Which of the following would likely lead to over-fitting?
 - a. small value for K (n neighbors) in K-nearest neighbors
 - b. small max_depth in a decision tree
 - c. large n estimators (number trees) in a random forest
 - d. large k in K-fold cross validation
 - e. none of the above
- 13. Which of the following is FALSE about PCA?
 - a. the first principle component represents the direction in which the data varies most
 - b. even if features are co-linear, principle components will not be
 - c. you can create as many principle components as there are features
 - d. you can often approximate your data using fewer principle components than original features
 - e. none of the above

DS325 Applied Data Science Exam 1 Spring 2025, Professor Roth

- 14. You are optimizing a decision tree using GridSearchCV with *5-fold cross validation*. You choose the following candidate values for your hyper-parameters:
 - i. $max_depth = [2, 4, 6]$
 - ii. min_samples_split = [5, 10]

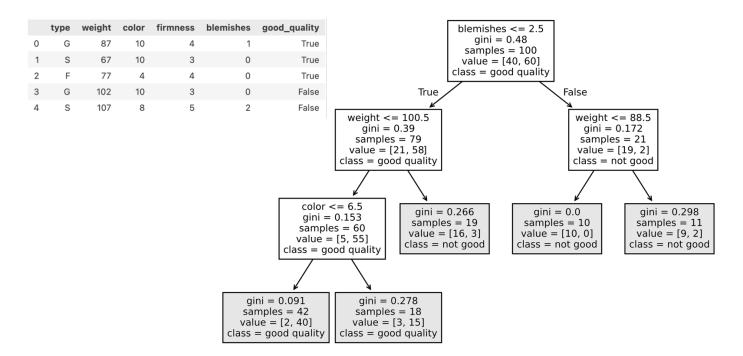
How many times will this search algorithm fit a model?

- a. 5
- b. 6
- c. 25
- d. 30
- e. 32
- 15. If a decision tree is over-fitting, which of the following might fix the issue?
 - a. increasing the max_depth
 - b. using a larger training data set
 - c. using more features
 - d. applying Lasso regularization
 - e. none of the above

II - Very short answer (10 pts)

- 16. In K-means clustering, which metric is used to choose the correct number of categories?
- 17. Which encoder creates new columns for each different value of a feature?
- 18. What is the name of the method for random selection with replacement (used in Random Forests)?
- 19. For any classifier, which metric represents the percentage of correct classifications across all tested data?
- 20. What is the name for the top-most node in a decision tree? What is the name for a terminal node where a decision is made?

III - Short Answer (20 pts)


- 21. Below is a dataframe for the pets available at an animal rescue. How would you encode the data?
 - **a.** For each kind of encoder you'll use, list the corresponding features.
 - **b.** Fill out the blank dataframe with the encoded values. Give any new columns easily interpretable names.

	names	type	weight	age	good_with_children	activity	special_needs
0	Bink	Dog	20	Puppy/Kitten	Yes	Very Active	Fenced Yard
1	Rascal	Dog	15	Adult	Yes	Lazy	Medicine
2	Purrburger	Cat	15	Senior	Yes	Active	None
3	Sage	Dog	50	Adult	No	Very Active	Fenced Yard
4	Cleo	Dog	25	Puppy/Kitten	No	Normal	None
5	Maru	Cat	5	Puppy/Kitten	Yes	Normal	Medicine

22. At an apple processing facility, apples are scored on several categories and a classifier determines whether each apple is 'good quality' (good for eating) or 'not good' (used for juice, baby food, baked goods, etc).

Below are the first five rows of a dataframe and a decision tree classifier trained on a sample of 100 apples.

- a. Which is the most informative feature in determining the quality of apples?
- b. Fill out the values of the confusion matrix according to this decision tree.
- c. Which metric would be most important for this classification? Explain very briefly.
- d. Calculate the value of the metric you chose?

